Für die Aufgaben wird neben den Lernprogrammen "Translator" und "Reverse Translator" auch eine (RNA-) <u>Code-Sonne</u> benötigt. Diese findet sich im Buch (Lehrwerk Focus Biologie 11, Seite 98, Abb. 2), oder eingebaut im "Reverse-Translator" oder online unter http://de.wikipedia.org/wiki/Code-Sonne. Vorher sollten die Übungsaufgaben zum im "Exprimierer" durchgearbeitet worden sein!

1. <u>Fähigkeit:</u> Übersetzen einer gegebenen DNA- oder RNA-Sequenz in die entsprechende Aminosäure-Sequenz.

Löse zunächst mit Hilfe der Code-Sonne die folgenden Aufgaben und überprüfe anschließen mit dem "Translator":

1.1 Einem Enzymprotein, entstanden aus 150 Aminosäuren, liegt ein DNA-Abschnitt zugrunde (Nukleotide mit den Basen 1 bis 450), der in den Nukleotidpositonen 10 bis 24 des codogenen Strangs folgende Basen enthält. [GK 1998/II/5]

Ergänze die komplementäre mRNA und die Aminosäureseguenz:

3' C G G C т Α C Α Α Т т т C 5' 12 21 Position 11 13 15 16 17 18 19 20 22 23 10 14 24 **mRNA**

AS

1.2 Durch eine spontane Mutation kommt es zu einem Austausch der Base an Position 15 in Adenin statt Thymin.

Ergänze wieder die komplementäre mRNA und die Aminosäuresequenz:

3' A C C G C Α G С Α Α Т Т Т 5' Α С 17 19 Position 10 11 12 13 14 15 16 18 20 21 22 23 24 **mRNA**

AS

1.3 Durch eine spontane Mutation kommt es zu einem **Austausch** der Base an Position 19 in Thymin statt Adenin.

Ergänze wieder die komplementäre mRNA und die Aminosäuresequenz:

3' С С G С Α G С Α Т Т С 5' 12 18 19 20 21 Position 10 11 13 14 15 16 17 22 23 24 **mRNA** AS

1.4 Durch ein Mutagen kommt es zu einem Basenverlust in Position 19 des angegebenen DNA-Abschnitts.

Ergänze wieder die komplementäre mRNA und die Aminosäureseguenz:

3' Α С С G C Т Α G С Α Т Т Т C 5' ? Position 18 20 21 10 11 12 13 14 15 16 17 19 22 23 24 **mRNA**

AS

1.5 Für einen Ausschnitt der DNA-Sequenz des codogenen Strangs das Achromatopsie-Gens findet man: [GK/2002/I/2.2]

Ergänze wieder die komplementäre mRNA und die Aminosäuresequenz

- Nicht mutiertes Allel:

3' C T G G G C A G G 5

mRNA

AS

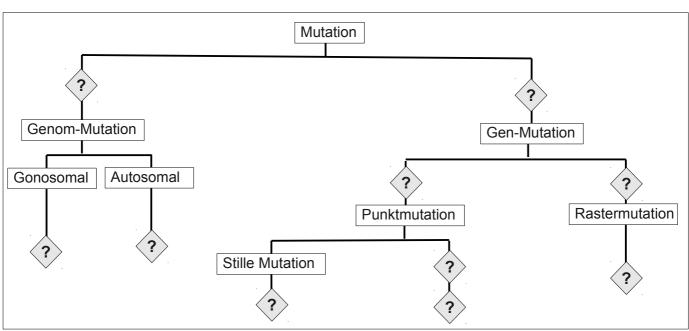
- Mutiertes Allel:

3' C T G G A C A G G 5'

mRNA

AS

AS


Veränderte Tertiärstruktur

1.6 An der Regulation der Eisenionen-Aufnahme im Dünndarm ist das HFE-Protein beteiligt, das vom HFE-Gen codiert wird. Die Ursache der Eisenspeicherkrankheit (Hämochromatose) ist eine Mutation im HFE-Gen. Zur Feststellung der Art der Mutation wurde eine Basensequenzanalyse des HFE-Gens einer gesunden und einer erkrankten Person durchgeführt. Im folgenden sind wieder Ausschnitte aus dem codogenen Strang angegeben. Ergänze die komplementäre mRNA und die Aminosäuresequenz: [GK/2009/A2/2.3]

- Nicht mutiertes Allel:

3' Α т Α G C C G C 5' Α С **mRNA** AS - Mutiertes Allel: 5' Т Α G C G G C C C **mRNA**

- 2. <u>Fähigkeit:</u> Zuordnen des Mutationstyps und Vorhersage der Auswirkungen auf verschiedenen Phänotyp-Ebenen.
 - 2.1 Übernehme auf einer extra DIN A4-Seite im Querformat das folgende Schema und ergänze an den angegebenen Stellen (ggfs. auch mehrfach) mit den unten angegebenen Textbausteinen:

		-		
Trisomie 21 Baseneinschub (Insertion)?	Veränderung eines Veränderung des	Turner-Syndrom 1.2 1.3		
	einzelnen Gens? Chromosomensatze	Down-Syndroll 1.4 1.5		
	Klinefelter Syndrom Basenverlust? Basenaustausch? Leserasterverschiebung?			
Veränderte Prim	närstruktur Veränderung der Nukleotidsequenz?	Evtl. veränderte Primärstruktur		

Evtl. verkürzte Polypeptidkette 🔡 1.6 💛 aber gleiche Tertiärstruktur

3.

Aus	 <u>Fähigkeit:</u> Kenntnis der Degeneration des genetischen Codes und der Bedeutung für die Auswirkungen von Punktmutationen. 3.1 Leite zunächst mit Hilfe des Lernprogramms "Reverse Translator" und anschließend mit Hilfe der Code-Sonne, alle möglichen Basensequenzen des codogenen Strangs ab. [GK/2010/A2/1.3] 						
Α	S Val	Leu	lle				
mRNA	5'			3'			
ggfs Variante							
DNA :	3'			5'			
ggfs Variante							
3.2 Begründe stichpunktartig, warum eine Punktmutation häufig keine Auswirkungen auf die Primärstruktur (= Aminosäuresequenz) hat!							